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This paper addresses shear-induced self-diffusion in a monodisperse suspension of
non-Brownian particles in Couette flow by two-dimensional computer simulations
following the lattice-Boltzmann method. This method is suited for the study of (many-
particle) particulate suspensions and can not only be applied for Stokes flow, but
also for flow with finite Reynolds number. At relatively low shear particle Reynolds
numbers (up to 0.023), shear-induced diffusivity exhibited a linear dependence on the
shear rate, as expected from theoretical considerations. Simulations at shear particle
Reynolds numbers between 0.023 and 0.35, however, revealed that in this regime,
shear-induced diffusivity did not show this linear dependence anymore. Instead, the
diffusivity was found to increase more than linearly with the shear rate, an effect that
was most pronounced at lower area fractions of 0.10 and 0.25. In the same shear
regime, major changes were found in the flow trajectories of two interacting particles
in shear flow (longer and closer approach) and in the viscosity of the suspension
(shear thickening). Moreover, the suspended particles exhibited particle clustering.
The increase of shear-induced diffusivity is shown to be directly correlated with this
particle clustering. As for shear-induced diffusivity, the effect of increasing shear rates
on particle clustering was the most intensive at low area fractions of 0.10 and 0.25,
where the radius of the clusters increased from about 4 to about 7 particle radii
with an increase of the shear Reynolds number from 0.023 to 0.35. The importance
of particle clustering to shear-induced diffusion might also indicate the importance
of other factors that can induce particle clustering, such as, for example, colloidal
instability.

1. Introduction
In concentrated non-Brownian suspensions, shear-induced diffusion affects the

motion of the suspended particles and is consequently of major importance for the
flow behaviour of these suspensions. A variety of interesting rheological phenomena
in concentrated suspensions is invoked by shear-induced diffusion, such as viscous
resuspension (during sedimentation and cross-flow filtration) and particle segregation
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in radial and pipe flow (see e.g. Chapman & Leighton 1991; Lyon & Leal 1998).
Therefore, this subject has attracted considerable attention from researchers, starting
with the first direct experimental study of Eckstein, Bailey & Shapiro in 1977. Later,
theoretical as well as numerical work followed (see e.g. Brady & Morris 1997; Drazer
et al. 2002).

In contrast to the more familiar diffusion concepts of Brownian diffusion and turbu-
lent diffusion, which are, respectively, caused by thermal fluctuations and inertial
effects, shear-induced diffusion is caused by hydrodynamic particle–particle inter-
actions. The diffusivity of the particles is the result of the spatial hindrance that
they experience in a concentrated suspension which is macroscopically forced to flow.
Although this process in principle is a deterministic process, it can be described as a
diffusion process owing to the complex nature of the hydrodynamics.

A distinction can be made between shear-induced self-diffusion and shear-induced
gradient diffusion (or migration). The first concept considers the motion of individual
particles in a homogeneous suspension, whereas the latter considers collective particle
migration in the presence of a gradient. This paper addresses the concept of shear-
induced self-diffusion only.

To obtain information about shear-induced self-diffusion, the motion of individual
particles in a suspension must be monitored. Experimental work is mostly carried out
with the use of tracer particles in a suspension. An overview of experimental data on
shear-induced self-diffusion is given by Breedveld et al. (1998, 2001). Unfortunately,
experimental techniques mostly impose severe limitations on the range of strain values
during which the particles can be monitored, which complicates the work on shear-
induced self-diffusion considerably. Theoretical analyses and numerical computations
can therefore be helpful for comparison and for information that cannot be obtained
with experiments.

A theoretical approach of shear-induced self-diffusion is complicated by the fact
that a two-body system in the presence of only hydrodynamic interactions, either
does not exhibit diffusive behaviour (for the motion parallel to the velocity gradient
and vorticity directions) or exhibits singular behaviour (for the motion parallel to
the fluid velocity). Approaches that have been applied to overcome this problem
in the theoretical computation of shear-induced diffusion, are the introduction of
an additional pair of particles (Acrivos et al. 1992), examination of three particle
interactions (Wang, Mauri & Acrivos 1996), introduction of surface roughness on
the particles (Da Cunha & Hinch 1996) and introduction of residual Brownian
motion and a hard-sphere interparticle force (Brady & Morris 1997). The latter
approach by Brady & Morris can be considered the most successful up to now. It
predicts the correct level of anisotropy between the diffusion in the velocity gradient
(Dyy) and vorticity (Dzz) direction. The calculated diffusivities are, however, a factor
of about six higher than values from experimental studies. Moreover, the theory
predicts a continuous increase of the diffusion coefficient with volume fraction, while
experimental values level off at high volume fractions. We can therefore conclude that,
in spite of the aforementioned rigorous attempts, up to now, no theory is available
that satisfactorily predicts shear-induced diffusive behaviour.

Some numerical studies on shear-induced diffusion have been reported using
Stokesian dynamics (SD) simulations (Yurkovetsky 1998; Foss & Brady 1999;
Marchioro & Acrivos 2001; Drazer et al. 2002). Many-body hydrodynamic inter-
actions are included in this simulation technique. The SD simulations provided self-
diffusion coefficients that are of the same order of magnitude as experimental results.
The computed anisotropy between Dyy and Dzz also compared well with experimental
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data. Although the SD simulations strongly contributed to the level of understanding
of shear-induced diffusion, the results of the simulations are not uncontroversial. The
dependence of the diffusion coefficient on the volume fraction, for example, is not
clear. While earlier work shows a continuous growth of the diffusion coefficient with
the volume fraction, recent work suggests the existence of a plateau at high volume
fractions (Foss & Brady 1999; Marchioro & Acrivos 2001). This plateau was, however,
only found for Dyy and not for Dzz. Another controversial aspect is the number of
particles incorporated in the system. The computational costs for calculations on non-
colloidal systems (dominated by hydrodynamics) are very high with SD and in most
published work, systems were used with 27 particles only. Since this system size is
small compared to any realistic system, the results have to be treated with caution. The
recent introduction of the accelerated Stokesian dynamics (ASD) simulation technique
(Sierou & Brady 2001), based on a much faster computational algorithm, allows the
study of large systems with typically 1000 suspension particles. Using ASD to study
shear-induced self-diffusion, Sierou & Brady (2004) indeed showed the relevance of
high particle numbers and sufficiently high strains for reliable diffusion coefficients.
Their results, covering the full diffusivity tensor, can probably be considered the most
accurate up to now.

Besides the relatively high computational cost, SD, and also ASD, have other
limitations for the simulation of shear-induced diffusion. The suspending fluid
is assumed to be Newtonian and to be flowing under conditions approximating
Stokes flow (particle Reynolds number Rep −→ 0). Although ASD may have better
possibilities, with SD, the application of non-spherical particle shapes and size
distributions is complex. Moreover, it is difficult to make the method suitable for
simulations in bounded regimes with container walls (Ladd & Verberg 2001). These
aspects may be of importance to gain a better insight into shear-induced diffusion
in practical systems. Therefore, although SD and ASD are robust methods that
accurately resolve hydrodynamic interactions, they are not yet able to address all
relevant aspects of shear-induced diffusion.

In this paper, a study on shear-induced diffusion is presented making use of a
lattice-Boltzmann (LB) model for particulate suspensions (Ladd & Verberg 2001). This
model combines Newtonian dynamics of solid particles with a discretized Boltzmann
equation for the fluid phase. The many-body hydrodynamic interactions are fully
accounted for (with inclusion of an explicit lubrication force for hydrodynamic
interactions over very short distances). However, the LB model may have a number
of advantages for the simulation of shear-induced diffusion over the SD model. Since
the interactions between the fluid and the suspended solid particles can be calculated
with simple local rules, the computational cost depends linearly on the amount of
suspended particles, which makes many-particle simulations feasible. The LB model is
also not restricted to the Stokes flow regime for fluid flow and can easily be applied for
non-spherical particles, for particles with a size distribution and for systems bounded
by container walls (Ladd & Verberg 2001). This may make the LB technique more
suitable for the simulation of shear-induced diffusion in more complex systems, where
the aforementioned aspects play a role.

The aim of this work is to examine shear-induced diffusion outside the Stokes flow
regime, at finite Reynolds numbers, and investigate the effect of inertia. The fact
that these conditions of finite Reynolds numbers are frequently applied in (industrial)
processes of suspensions, such as milk and other foods, paints and river water, makes
the relevance of this work evident. Although it is well-known that the rheological
behaviour of concentrated suspensions can become non-Newtonian in this regime, as
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far as we know, the scaling of shear-induced diffusion with the shear rate has not
been studied yet. In this study, we furthermore compare the shear-induced diffusive
behaviour with the effects of shear on the flow trajectories of one particle and two
interacting particles and on the viscosity of a multi-particle suspension, so as to be able
to detect possible correlations. The study is carried out for two-dimensional systems
in order to limit the computational costs. Although this might lead to differences in
the scaling of the relations in comparison with three-dimensional systems, the trends
will be similar.

In § 2, we present an outline of our LB method for particulate suspensions.
Subsequently, we show results of the shear-dependent behaviour of one (flow
trajectory), two (flow trajectory) and multi-particle (viscosity) systems. In § 4, we
present our results on shear-induced diffusion. As a relevant parameter, in § 5, an
analysis is made of the suspension microstructure at different shear rates, whereafter
we draw our conclusions.

2. Computer simulation method
We have applied the LB method in our simulations. Since this method has already

been outlined extensively in literature (see e.g. Ladd 1994a; Ladd & Verberg 2001),
we will only recapitulate the most important points. The LB method models a
compressible fluid (in which the speed of sound is finite) in the limit of low Mach
number (Ma = flow velocity/speed of sound), by solving the discretized Boltzmann
equation for fictitious fluid particles, that are constrained to move on a lattice. The
state of the fluid is characterized by the single-particle distribution function fi(x, t),
describing the average number of particles at a particular node of the lattice x, at a
time t , with the discrete velocity ci , which brings the fluid particles in one time step to
an adjacent lattice node. In the simulations described in this paper, the fluid dynamics
were solved with a D2Q9 LB scheme, which is defined on a two-dimensional square
lattice with rest particles and 8 non-zero particle velocities. The velocity directions
link lattice sites to its nearest and next-nearest neighbours. The velocity vectors on
this two-dimensional lattice are defined as:

ci =
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(2.1)

The hydrodynamic fields mass density ρ, momentum density j , and the momentum
flux density Π are moments of this velocity distribution:

ρ =
∑

i

fi, j =
∑

i

fi ci , Π =
∑

i

ficici . (2.2)

The ficticious fluid particles evolve by collisions and subsequent propagation to
neighbouring lattice sites. This two-step process is described by the following
equations:

f ′
i (x, t) = fi(x, t) −

∑
j

Ω ij f
neq
j (x, t), (2.3)

fi(x + �xi , t + �t) = f ′
i (x, t). (2.4)

Here, f ′
i (x, t) is the post-colllisional distribution function. The non-equilibrium part

of the distribution function is defined as f
neq
i (x, t) = fi(x, t) − f

eq
i (x, t). The lattice
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spacing is defined as �xi = ci�t . The collision operator Ωij controls the shear stress
relaxation at every lattice site. In our simulations, we applied the collision operator of
the BGK model (Bhatnagar, Gross & Krook 1954; Qian, d’Humières & Lallemand
1992), which is a simplification of the full LB model. The BGK collision operator
is defined such that the distribution functions are simply relaxed at each time step
towards the local equilibrium distribution with the relaxation time τ :

fi(x + �xi , t + �t) = fi(x, t) − fi(x, t) − f
eq
i (x, t)

τ
. (2.5)

The relaxation time τ controls the relaxation of the viscous stress in the fluid and is
linked to the kinematic viscosity ν via:

ν = c2
s

(
τ − 1

2

)
�t, (2.6)

where the speed of sound cs is defined by c2
s = c2/3. In our simulations, we applied

τ = 1.0 (in lattice units), which corresponds to a kinematic viscosity ν of the fluid
of 1/6 (in lattice units). The equilibrium distribution f

eq
i (x, t) is chosen such that

the Navier–Stokes equations for a weakly compressible system are obtained (Frisch,
Hasslacher & Pomeau 1986). It can be expressed as a series expansion in powers of
the flow velocity u:

f
eq
i = ρwi

(
1 +

1

c2
s

u · ci +
1

2c4
s

ūū : c̄i c̄i − 1

2c2
s

u2

)
, (2.7)

where ūū is the traceless part of uu, and the double dot product is defined as
A:B =

∑
α,β AαβBβα . The weight factors are given by w0 = 4/9, w1 =w3 = w5 = w7 =

1/9 and w2 = w4 =w6 = w8 = 1/36.
In the LB scheme for particulate suspensions as developed by Ladd (1994a), the

solid particles are defined by a boundary surface, which can be of any size or shape.
The solid particles are placed on the lattice, where the boundary surface cuts some
of the links between lattice nodes. Fluid particles moving along the boundary surface
interact with the surface at boundary nodes that are located at the lattice nodes
nearest to the boundary surface of the solid particles, following an alternative method
to Ladd’s, that was developed by Behrend (1995). In this method, called relaxed
bounce back at the nodes, the LB collisions are carried out at every node, including
the boundary nodes. The collision rules at the boundary surface enforce a stick
boundary condition on the fluid, which means that the fluid velocity is matched to
the local solid-body velocity ub. This local solid-body velocity ub (at position xb) is
determined by the solid-particle velocity U , its angular velocity Ω and the position
of its centre of mass R:

ub = U + Ω × (xb − R). (2.8)

After the collision phase, the boundary nodes are updated in the following way:

fi(x + �xi , t + �t) = f ′
−i(x, t) +

2ρwi

c2
s

ub · ci , (2.9)

fi(x − �xi , t + �t) = f ′
i (x, t) − 2ρwi

c2
s

ub · ci . (2.10)

For moving suspension particles, in this update, momentum is exchanged between the
incoming particles from the fluid and the solid side (the combined momentum of the
fluid and the solid phase is, however, conserved). From this momentum exchange,
the force and torque exerted on a suspension particle is calculated. Hereinafter, the
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kinematic properties of the suspension particles are updated with a simple Euler
forward integration of Newton’s second law.

The choice of the location of the boundary nodes, the discretization of the particle
surface onto the lattice and the boundary update rules induce a certain hydrodynamic
particle diameter that is larger than the diameter based on the number of occupied
lattice nodes (Ladd 1994b). In dilute systems, in the Stokes flow regime and for
sufficiently large particles, the difference between the input particle diameter and the
hydrodynamic particle diameter can be considered constant (but dependent on the
kinematic viscosity). With the relatively large particle diameters of 16 lattice units
applied in this study, this would give a deviation on the input particle diameter of
a maximal 5 %. In our study, the particle fraction and shear-induced diffusivity are
the most important parameters that depend on the particle diameter. A correction
method could be to use the hydrodynamic instead of the real particle diameter for
the calculation of the particle fraction or shear-induced diffusivity. These calculations
are carried out afterwards, so the simulation method itself remains the same. The
quadratic dependence of these parameters on the particle diameter would, in its turn,
give rise to a maximal deviation of 10 % on the particle fraction and the shear-
induced diffusivity. In general, this deviation lies within the standard deviation of
our simulation results. In our simulations, moreover, we focus on rather concentrated
suspensions outside the Stokes flow regime, where we not only expect the deviation
to be smaller than for dilute systems in the Stokes flow regime, but also to be
dependent on the actual hydrodynamic conditions. Because determination of the
actual hydrodynamic diameter in concentrated suspensions outside the Stokes flow
regime would become very complex, we used the real particle diameter in our
simulations, knowing that this gives a small, probably even negligible error.

Since a suspended particle is essentially simulated by the introduction of a boundary
surface, separating the interior of the particle from the exterior, the interior of the
particle also consists of fluid. Ladd (1994b) examined the effects of the interior fluid
on the behaviour of the particle. With a sufficiently high effective mass of the particle,
the interior fluid only contributes an inertial force due to the extra mass of the
particle. Our computations were carried out in this regime, with an effective mass
density ρs/ρ of 10. By comparing simulation results with an effective mass of 3 and
10, we found that the relatively high effective particle mass did not contribute to the
observed effects of Rep on the viscosity and shear-induced diffusion in this paper.
It can therefore be hypothesized that fluid inertia plays a larger role than particle
inertia in our system. This matter is little discussed in the literature, so we do not
take it into consideration any further.

Since shear-induced diffusion is mainly governed by hydrodynamic particle
interactions, these interactions must be accurately resolved in the computations. When
two suspension particles come into close contact with each other, the lubrication force
becomes important. This force is caused by the attenuation of the fluid film in the
gap between the two particles and is repulsive upon approach and attractive upon
separation of the particles. When the gap width between two particles is of the order
of one lattice spacing, the lubrication force is, however, not exactly resolved with the
LB method. This is due to the discretization of the particles and fluid on a grid and is
a problem that is encountered by all numerical methods. To overcome this problem,
we applied a lubrication correction as proposed by Ladd & Verberg (2001) for a
three-dimensional system. It starts with an explicit calculation of the lubrication force
when the gap width is smaller than two lattice units (= 0.25a). Since we considered a
two-dimensional system, we used the following equation for the lubrication force per
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unit length F , which is valid for the lubrication force between two cylinders (see the
Appendix):

F = ηU

((
h

a

)−3/2(
F0 +

h

a
F1

)
−

(
hc

a

)−3/2(
F0 +

hc

a
F1

))
, h < hc, (2.11)

F = 0, h > hc, (2.12)

where two particles approach each other with a velocity U , 2h = |R12| − 2a is the
gap (distance between the particle surfaces), F0 and F1 are numerical constants. In
accordance with Ladd & Verberg (2001), we applied a correction on the lubrication
force to account for the lubrication force that is already resolved in the computations
of the fluid dynamics. This was done by subtracting the lubrication force at a cutoff
distance hc from the total lubrication force, as indicated in (2.11). The cutoff distance
hc represents the cutoff distance between the particle surfaces for the added lubrication
force and was chosen equal to one lattice unit (= 0.125a) in our study. For three-
dimensional systems, Nguyen & Ladd (2002) showed that this correction leads to
more accurate results for particle interactions at short interparticle distances, even
with neutrally buoyant particles very near to contact and without causing instabilities
in the particle dynamics. These improvements are also expected for a two-dimensional
system.

We have noticed, that in suspensions with particle fractions exceeding 0.40 and at
relatively high shear rates, particle clustering and overlap can occur, which greatly
affected the diffusive behaviour of the particles. This behaviour seems to be correlated
with the lubrication breakdown of concentrated colloids, that was reported by Ball &
Melrose (1995). As suggested by these authors, we applied a Hookean spring force
between the particles for particle fractions exceeding 0.40 to avoid this clustering and
overlap. This Hookean spring force was applied for gaps 2h smaller than a thickness
δ and was applied in the direction of the line of particle centres, according to:

Fh = Fm −
(

Fm

δ

)
2h, (2.13)

with a maximal Hookean spring force Fm of 10.0 (in lattice units). The Hookean
spring force is active in a layer around the particle with a thickness δ/2 of 0.05
lattice units (= 0.00625a). When using the LB model as described above, we found a
good agreement between our computer simulation results for the viscosity and model
results of the Krieger–Dougherty model (particle fractions between 0.05 to 0.55).
Especially at high particle fractions, the viscosity is known to be highly dependent
on particle interactions. The good agreement with the Krieger–Dougherty model
therefore indicates that our model captures the particle behaviour well.

3. Effects of hydrodynamics and inertia in particle suspensions
Our simulations on shear-induced diffusion are carried out in a two-dimensional

multi-particle suspension (actually cylinders) in a Couette system with solid moving
walls. Before examining this complex system, we first studied the behaviour of a
single cylinder and of two interacting cylinders in shear flow, in order to investigate
some relevant effects in a simpler system. The case of the single cylinder studies wall
effects and the effect of Rep and is compared with data from literature concerning
three-dimensional systems. For the case of two interacting cylinders neither analytical
nor numerical (two-dimensional) solutions were available so the comparison with
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literature is only qualitative. This study is presented to show the effect of Rep on
the flow trajectory of two interacting cylinders in shear flow. Besides these one- and
two-cylinder systems, we determined the effects of Rep on the viscosity of a multi-
particle suspension, which enabled us to examine the collective particle behaviour in
a Couette system with solid moving walls and relate this behaviour to the results
presented in § § 4 and 5 of this paper. The results of the preliminary simulations are
discussed in this section.

The computer simulations on a single and on two interacting cylinders were carried
out in a Couette system, consisting of a box with solid walls at the upper and lower side
and periodic boundaries at the left- and right-hand side of the box. The walls move
parallel to each other with a constant velocity, but in opposite direction. The width
of the box between the periodic boundaries was equal to 640 lattice units (= 80a).
The height of the box between the two parallel walls was 320 lattice units (= 40a)
(in most cases) and the wall velocity was between 0.002 and 0.054 lattice units per
time step, resulting in a shear rate between 1.25 × 10−5 and 7.50 × 10−4 per time step.
Therewith, the shear based particle Reynolds number Reshear,p (= 4γ̇ a2/ν, with ν is
the kinematic viscosity) was between 0.019 and 1.152. For the case of a single cylinder,
the height of the box and the wall velocity were varied, but in such a way that the
shear rate and Reshear,p were in the range indicated above.

For a single cylinder placed at the horizontal centreline of the Couette system,
the equilibrium angular velocity of the cylinder is determined as a function of the
distance between the solid walls and as a function of Reshear,p . In this paper, the
angular velocity ω is normalized for the shear rate. We compare our results to
results of Nirschl, Dwyer & Denk (1995), who carried out comparable computations
with a finite-volume numerical scheme, but for a three-dimensional system. Taylor
(1932) derived an analytical solution for low-Reynolds-number flow over a rotating
sphere in simple shear, which predicts an angular velocity ω of a half. The computed
angular velocity ω is presented as a function of Reshear,p in figure 1. For a distance
between the walls Y = 10a and Y =40a and Reshear,p < 0.5, the angular velocity ω

approached Taylor’s solution to within a few per cent. For Reshear,p up to 1.152, no
large influence of Reshear,p on the angular velocity ω is seen. The influence was slightly
larger for larger distances between the walls. This is in agreement with the findings
of Nirschl et al. (1995) for a three-dimensional system. The influence of Reshear,p can
be attributed to the blockage of fluid near the particle axis. This blockage creates a
recirculation of fluid, and the streamlines divert into the gap between the wall and
the particle. Therewith the resistance to flow in the gap increases, and the flow losses
are larger with increasing Reshear,p , leading to a decrease of the angular velocity ω.
When the distance between the walls is smaller, the recirculation is inhibited so that
the effect of Reshear,p is less than for larger distances. When the distance between
the walls decreased to 5a or smaller in our simulations, the walls had an increasing
effect on the angular velocity ω. Compared to the three-dimensional results of Nirschl
and others, this effect is more pronounced in a two-dimensional system. This can be
understood because the intensity of the flow field around a cylinder is larger than
around a spherical particle.

All together, these results lead us to the conclusion that in the shear regime of our
study, Reshear,p does not have a significant effect on the rotation of a single cylinder.
When the cylinder closely approaches a solid wall, the angular velocity decreases
owing to the interaction with the wall. This effect is larger in a two-dimensional than
in a three-dimensional system. These results also give an indication of wall effects in
a Couette system where the cylinder is placed eccentrically in that system. It is known
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Figure 1. The angular velocity ω as a function of Reshear,p for a single cylinder with radius a
in shear flow. The distance between the solid walls of the Couette system was varied between
2.5 and 40a. The results are compared to results of Nirschl et al. (1995) for a three-dimensional
system (solid symbols). The inset shows a scheme of the simulated situation.

that cylinders tend to migrate to the centreline of a Couette system (Feng, Hu &
Joseph 1994b). The migration velocity is, amongst others, dependent on the distance
from the wall. We can expect that migration becomes important at particle distances
from the wall where the angular velocity is significantly affected. Consequently, when
wall effects on the total system need to be negligible, the distance between the walls in
a multi-particle system needs to be sufficiently high. Therefore, the distance between
the walls was minimally 56a in the simulations on multi-particle systems in the rest
of this paper.

In another study, we determined the drag coefficient of a single cylinder settling
along the centreline of a confined channel (results not shown). These results were
found to be in good agreement with results of Feng et al. (1994a) and Aidun & Lu
(1995), indicating that the drag of a transposing cylinder is accurately resolved with
our LB method.

The interactions between two cylinders subjected to simple shear flow provide
an important basis for analysing shear-induced diffusive behaviour of suspensions,
because this behaviour can be considered the basis for shear-induced diffusion in the
low-concentration limit. Batchelor & Green (1972) have derived analytical solutions
for three-dimensional systems of spheres without inertia. Trajectories can either extend
to infinity (open trajectory) or not (closed trajectory). The interaction between equal-
sized spheres is symmetric and such spheres can approach each other to exceedingly
small separations. Factors such as surface roughness can disturb the symmetry of
the process, because this can impose an additional force onto the spheres when
in close contact. Therefore, closed trajectories will probably only occur for very
smooth spheres. We have studied the effect of inertia on hydrodynamically interacting
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Figure 2. Flow trajectories for two interacting cylinders with radius a in shear flow. Reshear,p
varied between 0.019 and 0.518. The positions are related to the initial midpoint of the two
cylinders.

cylinders by varying Reshear,p in a system with two equal-sized cylinders in an open
trajectory.

In our simulations, these two cylinders were placed in the box at heights symmetrical
around the horizontal centreline, at a distance of 19.25a from the moving wall and
0.75a from the centreline. The initial horizontal distance between the cylinders was
10.0a. Based on the simulations on one cylinder as presented in figure 1, it can be
expected that the walls did not affect the flow of the cylinders. The trajectories of the
interacting cylinders were computed for various shear rates (figure 2).

At a Reshear,p of 0.019 and 0.058, no clear effects of inertia can be seen in the
flow trajectories. In their tumbling movement around each other, the cylinders reach
a minimum separation of 0.20 × 2a (figure 3). When compared to three-dimensional
systems, this minimum separation is large. This can be explained because the flow
of fluid out of (into) the gap during approach (separation) of two parallel cylinders
is more hindered than for the case of spheres. The trajectories upon approach
and upon separation are practically symmetric, which is in accordance with the
relatively large separation distances in this system. At Reshear,p > 0.058, inertial effects
become visible in the trajectories. One effect is that the separation distance between
the cylinders became smaller, both during approach and during separation. The
minimum separation between the cylinders decreased to 0.11 × 2a for Reshear,p equal
to 0.52 (figure 3). This effect can be explained because inertia causes the cylinders
to move to different streamlines, and is probably due to particle inertia rather than
fluid inertia. A second effect is that at larger separation distances, the cylinders slowly
moved towards the centre axis of the system before they start tumbling over each
other. Upon separation, a similar movement away from the centre axis took place.
Inertial effects in the fluid flow around the cylinders are the most probable cause
for this effect. Finally, the trajectories upon approach and separation exhibited an
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Figure 3. Separation distance as a function of the horizontal position of the upper cylinder, for
two interacting cylinders with radius a in shear flow. Reshear,p varied between 0.019 and 0.518.

increasing asymmetry with increasing Reshear,p . This effect, although small, can be
seen in figure 3. The minimum separation was still too large to be able to explain
the observed asymmetry with the action of the repulsive Hookean spring force Fh or
with the effect of surface roughness (a different flow trajectory would then also be
expected). Inertial effects seem, therefore, to be responsible for this asymmetry. The
inertial effects during the interaction between the cylinders lead to a dispersal of the
cylinders at Reshear,p = 0.52, which proceeded with repeated encounters of the cylinders
(figure 4). Even when the separation distance between the cylinders has become larger
than 7 × 2a, the dispersal still proceeds. Because the vertical velocity decreases with
increasing separation distance and does not exhibit a logarithmic trend in time, it is
expected that the cylinders will have reached their equilibrium position at a separation
distance of about 8 × 2a. The distance from the walls was still about 12a, so that it
is not likely that this final separation distance is affected by the presence of the walls.

The viscosity is determined from a multi-cylinder suspension in a Couette system,
with Reshear,p varying between 0.003 and 0.33. Our results for the viscosity are
presented as relative values to results from the semi-empirical model of Krieger &
Dougherty (Krieger & Dougherty 1959; Krieger 1972). This model is known to give
accurate predictions for the viscosity at low Re, for both two- and three-dimensional
suspensions. The effective viscosity µs/µf is calculated as follows:

µs/µf =

(
1 − 〈φs〉

φmax

)−[η]φmax

, (3.1)

where 〈φs〉 is the averaged solid volume or area fraction and φmax is the maximum
packing fraction, which has a value of 0.82 for a two-dimensional suspension. The
dimensionless factor [η] is the intrinsic relative viscosity of the suspension and has a
value of 2 for a two-dimensional suspension.
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Figure 4. Vertical position (Y − Ycentre)/a as a function of the strain γ̇ t for two interacting
cylinders with radius a in shear flow. Reshear,p was equal to 0.518. The initial position of
the cylinders was symmetrical around the centre axis, at a distance of 0.75a from the centre
axis and of 19.25a from the nearest wall. The oscillations in the trajectory are caused by the
repeated encounters of the cylinders.

In our computations, the system height and width were 518 (= 64.75a) and 259
(= 32.38a) lattice units, respectively, and the shear rate varied between 1.93 × 10−6

and 2.16 × 10−4 per time step. An amount of 66, 166 or 266 cylinders with radius
a were randomly suspended in the domain, corresponding with area fractions φ of
0.10, 0.25 and 0.40, respectively. The viscosity was determined from the average stress
at the walls over a strain range of at least 1.5 at a shear rate of 1.93 × 10−6 per
time step, increasing to a strain range of 86 at a shear rate of 2.16 × 10−4 per time
step. This increase of strain range was necessary to acquire sufficient accuracy at high
shear rates, where the time-dependent fluctuations of the stress were higher.

Our viscosity data in the regime with low Reshear,p agree well with the Krieger–
Dougherty model (figure 5). At higher Reshear,p , however, starting at Reshear,p = 0.012,
shear thickening occurred in the suspensions with area fractions of 0.25 and 0.40.
This shear thickening was most intense at an area fraction of 0.40, where the effective
viscosity increased by about 35 % with an increase of Reshear,p to a value of 0.1. At
these high values for Reshear,p , the viscosity starts to levels off. The velocity profile
in the Couette system was found to be linear, except for φ = 0.40 and Reshear,p > 0.2,
where slip started to occur near the wall. At φ =0.40 and Reshear,p = 0.33, this lead
to a decrease of the shear rate in the bulk phase of about 15 % when compared to
a situation with a linear profile. This might also have consequences for the accuracy
of the viscosity calculations, since the viscosity is determined from the stress near
the wall. For the great majority of the calculations, however, slip did not play a role
and the viscosity calculations are expected to be accurate. For highly concentrated
suspensions, the increase of viscosity with increasing particle fraction in the Stokes
flow regime has been found to coincide with particle clustering (Brady & Bossis 1985).
It might be that in our case, where we found a viscosity increase with shear rate,
particle clustering also plays a role. An analysis on particle clustering in our system
is therefore presented in § 5.
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Although limited results are available, shear thickening behaviour has also been
observed by other workers, experimentally as well as in computer simulations (see e.g.
Hoffman 1998; Shakib-Manesh et al. 2002). Shear thickening is found particularly
in suspensions where hydrodynamic forces are dominant (at high Péclet number
(= 8µf a3γ̇ /kT where k is the Boltzmann constant and T the absolute temperature)).
Similar to our results, Shakib-Manesh et al. (2002) observed shear thickening of
two-dimensional suspensions. In their study, for suspensions with a cylinder area
fraction up to 0.52, the effect of shear thickening on the viscosity was only relevant
when Reshear,p was larger than about 0.5, so, in a quantitative sense, their results do
not fully agree with ours. This may, however, be due to differences in the way the
particle interactions are handled at short distances in the codes used. In contrast to
our method, Shakib-Manesh et al. did not correct for the lubrication force at short
particle distances; this difference might be relevant for clustering behaviour of the
suspension. This comparison shows that shear thickening can be delicately affected
by interparticle forces, which hampers quantitative comparison of data.

4. Shear-induced diffusion at non-zero Reynolds numbers
In this section, we present results of LB simulations on shear-induced diffusion

in two-dimensional systems. In these two-dimensional systems, we can distinguish
components of the shear-induced self-diffusion tensor in the fluid velocity and in the
velocity gradient direction, and their diagonal component. Whereas the displacements
in the velocity gradient direction are purely determined by the hydrodynamic
interactions between the cylinders, the displacements in the fluid velocity direction
also consist of a convective term due to the shear flow of the fluid. The analysis of
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shear-induced self-diffusion in the velocity gradient direction is consequently more
straightforward. Since the component in the velocity gradient direction is, in practice,
the most relevant, we only describe our results for this direction.

The relevant time and length scales in the system are the shear rate γ̇ and the
cylinder radius a, respectively. On basis of dimensional arguments, it can be shown
that the self-diffusivity scales as γ̇ a2 (in the Stokes flow regime). All diffusivities
reported are therefore normalized on γ̇ a2.

The shear-induced self-diffusion coefficients can be determined from the increase of
the mean-square displacements with time after diffusive motion has been established,
according to:

〈y(t)y(t)〉 ≈ 2Dyyt. (4.1)

The angle brackets denote an average over all cylinders in the system, while y

denotes the displacement of a single particle in the direction of the velocity gradient.
Dyy denotes the self-diffusivity in the velocity gradient direction. This self-diffusivity
is defined as the time rate of change of a half multiplied by the mean-square
displacement:

Dyy ≡ lim
t→∞

1

2

d

dt
〈y(t)y(t)〉. (4.2)

The motion of a non-Brownian cylinder is, in principle, purely deterministic and the
displacement of a given cylinder depends only on the external velocity field and its
interactions with all other cylinders in the system. To obtain the random displacements
that are a characteristic of diffusive motion, the initial cylinder configuration must
also be changed. As a consequence, the sampling time must be relatively long in
order to determine the diffusion coefficients. Therefore, shear-induced diffusion can
be characterized as a long-time diffusion process.

As for the aforementioned studies on one or two interacting cylinders in shear
flow and on the viscosity in relation to the particle fraction, the system consisted
of a Couette system with periodic boundaries in the flow direction of the fluid and
two moving walls in the velocity gradient direction. A varying number of cylinders
with a radius of 8 lattice units is randomly distributed in the system at the start of
the simulation. The simulation runs were started with position-dependent fluid and
cylinder velocities according to linear shear flow.

As an example of the typical time-dependent behaviour of the cylinder displace-
ments, in figure 6, a mean-square displacement curve is shown for a system with a
cylinder number N of 200 and an area fraction φ of 0.25. From the double-logarithmic
plot in figure 6, it becomes clear that, at very short times, the mean-square displace-
ment shows a quadratic temporal behaviour, which corresponds to the deterministic
strongly correlated cylinder displacements in this regime. Only after a strain of about
γ̇ t = 8 do the cylinder displacements become random, resulting in a linear behaviour
of the mean-square displacement curves. The diffusion coefficient, which is evaluated
from this simulation run, is also given in figure 6. In order to evaluate the effect of
the initial particle configuration on the diffusion coefficient, we split the displacement
curve of one simulation run into several curves which start at different times of
the simulation run (and consequently at different particle configurations). In each
separate curve, the mean-square displacement was monitored over a strain of 30.
The final diffusion coefficient is the mean value of the diffusion coefficients that were
determined from the individual mean-square displacement curves.

From a strain γ̇ t of about 1 to 8, a transitional regime exists, in which the
temporal behaviour is neither quadratic nor linear. Although this is not necessarily
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Figure 6. Mean-square displacement in the velocity gradient direction as a function of time,
both presented as dimensionless values, for a two-dimensional suspension (N = 200, φ =0.25)
in shear flow at Reshear,p = 0.023.

true, the time-dependent behaviour in our (two-dimensional) simulations compares
well with the findings of Sierou & Brady (2004) from their (three-dimensional) ASD
simulations. Our results confirm their statement that strains must be sufficiently long
in order to obtain an accurate value for the shear-induced diffusion coefficient. Strains
that are too small lead to an overestimation of the shear-induced diffusion coefficients.
This probably explains the relatively high diffusion coefficients in some experimental
studies, e.g. the study of Breedveld et al. (2001).

The number of cylinders in the system is known to be an important factor in the
determination of the diffusion coefficients (Sierou & Brady 2004). The main reason for
this is that for cylinder separations greater than the length of the system, the cylinders
can interact with their periodic images, which affects the diffusivities. Smaller cylinder
numbers correspond with a smaller system size, which might lead to a larger deviation
in the calculated diffusivity. For concentrated suspensions, it can be expected that
this deviation depends more on the cylinder number than on the system size (in other
words, at higher concentrations, smaller system sizes would suffice). In our system, this
idea is only relevant for the velocity direction, since we have no periodic boundaries
in the velocity gradient direction. Because the number of cylinders that is sufficient
for an accurate calculation of the diffusivity cannot be theoretically evaluated, it
needs to be established in an empirical way. Therefore, in figure 7, the calculated
diffusion coefficients are presented as a function of the number of cylinders for an
area fraction φ of 0.25. To investigate the effect of the number of cylinders, only the
width X of the simulation box was varied, while the height Y between the confined
walls was kept constant at 71a. For cylinder numbers smaller than N = 100, there is a
rather sharp increase in diffusivity with the number of cylinders. This is followed by
a levelling off of the diffusivity with higher numbers of cylinders. The decrease of the
standard deviation from N = 200 to N = 600 reflects the improved statistical accuracy
by the increased cylinder number, since the same number of configurations is used
for the calculation of shear-induced diffusivity. From the observed relationship, we
draw the conclusion that a cylinder number of more than 100 is required for the
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Figure 7. Component Dyy of the shear-induced self-diffusion coefficient as a function of the
cylinder number N for a two-dimensional suspension (φ =0.25) in shear flow at Reshear,p =
0.023. The width of the simulation box between the periodic boundaries is varied, while the
height between the confined walls is kept constant at 71a. The error bars indicate the standard
deviation of the mean shear-induced self-diffusion coefficient, which is determined from 6–12
individual mean-square displacement curves with different initial particle positions and over a
strain of 30.

determination of diffusivities with sufficient accuracy. Since the box dimensions at an
equal particle number differ for a two-dimensional and a three-dimensional system,
it can be expected that the dependence of shear-induced diffusivity on the particle
number is also different. However, the relation between the diffusivity and the cylinder
number is found to compare well with the one that was found in SD simulations for
three-dimensional systems (Sierou & Brady 2004). Our results therewith confirm a
statement of Sierou & Brady (2004), namely that the results of Foss & Brady (1999)
are influenced by the fact that they only used a particle number N of 27 in their
SD simulations. For the following simulations presented in this paper, we applied a
cylinder number N of 200, unless otherwise stated. The size of the simulation box is
chosen such that Y was always twice as large as X, as is the case in the simulations
presented in figure 7 with N = 200. The distance between the solid walls Y was such
that the measured shear-induced diffusivity agrees with that of an infinitely large
system (results not shown).

LB simulations are not limited to the Stokes flow regime. This makes it possible
to determine the particle movements in systems with non-zero Reynolds numbers,
which can be considered relevant for many practical systems. During pipeflow and
microfiltration for example, the shear rate can, in general, easily exceed values
of 1000 s−1, which is already beyond the Stokes flow regime for suspensions with
particles sizes in the micrometre range. On the basis of the consideration that particle
interactions cause shear-induced diffusion and that the number of particle interactions
scales linearly with the shear rate, it can be expected that the dimensionless diffusion
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Figure 8. Mean-square displacement in the velocity gradient direction as a function of
time, both presented as dimensionless values, for a two-dimensional suspension (N = 200,
(a) φ = 0.10, (b) 0.25 and (c) 0.40) in shear flow at Reshear,p = 0.023 (solid line), 0.115 (dotted
line), 0.161 (medium dashed line) and 0.346 (dash-dot-dotted line).

coefficient Dyy/γ̇ a2 is independent of γ̇ in the regime where inertial or other shear-
related effects do not (yet) play a role. To our knowledge, however, it is not known at
which conditions inertial or other shear-related effects come into play and how they
affect shear-induced diffusion. We therefore analysed the particle movements in the
velocity gradient direction in relation to Reshear,p .

For Reshear,p from 0.023 up to 0.346 and cylinder area fractions of 0.10, 0.25 and
0.40, the mean square displacement 〈yy〉/a2 as a function of the strain γ̇ t is presented
in figure 8. The relation was linear (after a strain γ̇ t ≈ 8), as in accordance with
shear-induced diffusive behaviour. We also observed that the average displacement
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Figure 9. Component Dyy of the shear-induced self-diffusion coefficient as a function of
Reshear,p for a two-dimensional suspension (N = 200) in shear flow with a cylinder area
fraction φ of 0.10 (filled circles), 0.25 (open triangles) and 0.40 (filled squares). The error bars
indicate the standard deviation of the mean shear-induced self-diffusion coefficient, which is
determined from 6–12 individual mean-square displacement curves with different initial particle
positions and over a strain of 30. The lines are fits to the data points and are drawn as a guide
to the eye.

in the velocity gradient direction remained (nearly) zero for particle area fractions of
0.10, 0.25 and 0.40. The particle distribution across the height between the two walls
remained nearly constant in time as well, which also indicates that no net particle
transport has taken place. At a cylinder area fraction of 0.10 and 0.25, however, a
systematic increase of 〈yy〉/a2 with γ̇ t is observed when Reshear,p was increased. At a
cylinder area fraction of 0.40, this increase with Reshear,p was also present, although
not as evident as for an area fraction of 0.10 and 0.25. The diffusivity seems to reach
a plateau value at this area fraction of 0.40. As mentioned in § 3, wall slip starts to
occur at φ = 40 and for Reshear,p > 0.2. The effect of wall slip on the shear rate seems
too small to explain the relatively small increase of the diffusivity at φ =40, but the
behaviour might be related to microstructural features. This is investigated in the
next section.

The results indicate that the dimensionless diffusion coefficient Dyy/γ̇ a2, as deter-
mined from the slope of the curves in figure 8, was not independent from the shear
rate, as is shown in figure 9. For φ = 0.10, 0.25 and 0.40, the increase started at about
Reshear,p =0.04, which is comparable to where the shear thickening behaviour started.
The effect of the cylinder fraction was, however, opposite between shear-induced
diffusion and viscosity, because we observed the largest effects on shear-induced
diffusion at the lower cylinder fractions.

In spite of the lower number of particle collisions, the standard deviation of the
shear-induced diffusivity was relatively low at a particle area fraction φ = 0.10. This
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indicates that, in principle, the averaging took place over sufficiently large strains and
with sufficiently high cylinder numbers. The standard deviation, however, increased
with increasing Reshear,p and when Dyy/γ̇ a2 exceeded a value of about 0.10, the
standard deviation was relatively large, indicating time-dependent fluctuations in
the collective cylinder movements. This might be a combined effect of correlated
movement of the cylinders, caused by particle clustering, and high stresses on the
cylinders. Improving the accuracy of the shear-induced diffusion coefficients in this
regime would require much larger systems, which was not deemed necessary in this
study.

It may be expected that the dependence of the shear-induced diffusivity on Reshear,p

is due to the correlated motion of cylinders, in other words, to the formation of a
suspension microstructure. In the next section, this microstructure is analysed in order
to have a clearer picture of shear-induced changes in the suspensions.

5. Shear-induced changes in microstructure
In order to analyse the microstructure, we determined the two-dimensional pair-

distribution function, which represents the concentration distribution of cylinders
around a cylinder. This pair-distribution function was assessed by averaging the pair-
distribution function of two separate simulation runs. In each simulation run, the
distribution function was determined by averaging the distribution at five different
strains, namely at γ̇ t = 30.0, 37.5, 45.0, 52.5 and 60.0. Cylinders at a position closer
than a distance 0.2Y (Y = height between the walls) from the wall were excluded
as reference particles from the distribution function, in order to avoid wall effects.
The concentration distributions are only shown for �X and �Y smaller than 3.5a,
because outside this region no cylinder preference positions could be observed. For
a cylinder area fraction of 0.10, a clear effect of Reshear,p can be seen (figure 10). At
Reshear,p = 0.023, a concentration peak can be observed above and under the cylinder,
at a distance of about 2a − 3a. The concentration distribution was anisotropic as
no peak can be observed left and right of the particle. At higher Reshear,p , the
concentration peak at a distance of about 2a − 3a becomes more circular (isotropic)
as well as more pronounced. A maximum concentration peak with a value of about
1.4 a.u. is found at Reshear,p =0.161. These results clearly show that the cylinders tend
to stay closer to each other at higher Reshear,p . For a cylinder area fraction of 0.25,
already at Reshear,p = 0.023 a circular concentration peak was present at a distance of
about 2a−3a (figure 10). Small peaks with a maximum concentration of about 2.8 a.u.
were already present as well. With increasing Reshear,p , the concentration peak was
more pronounced, which again indicates an increased clustering of the particles. The
concentration profile at a cylinder area fraction of 0.40 was already very pronounced
at Reshear,p = 0.023 with locally maximum concentrations of about 5.0 a.u. (figure 10).
In contrast to cylinder area fractions of 0.10 and 0.25, high Reshear,p did not, however,
invoke more clustering. This seems to be consistent with the effects on shear-induced
diffusion, where we also found minor changes at a cylinder area fraction of 0.40.

In the pair-distribution function, the concentration peaks at short interparticle
distances are generally very high, whereas they are less pronounced at longer
interparticle distances, especially in the case of isotropic distributions. This makes
the pair-distribution function less sensitive to concentration variations at longer
interparticle distances and therefore not suited for the analysis of the size and density
of the particle clusters. These parameters can, however, be determined from the scaling
of the integrated pair correlation function, according to a version of the so-called
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Figure 10. The two-dimensional pair-distribution function, averaged over a strain γ̇ t from 30
to 60, for a two-dimensional suspension (N =200) in shear flow with a cylinder area fraction φ
of (a) 0.10, (b) 0.25 and (c) 0.40 at (i) Reshear,p = 0.023, (ii) 0.161 and (iii) 0.346. Dark regions
represent high probability and light, low probability.

sandbox method (Haw, Poon & Pusey 1994). In this method, we consider the number
of particles n(r) in a sphere of radius r around any particle of the cluster. Simple
linear regression on log(n) versus log(r) yields the parameters n0 and df from the
scaling relation for fractal clusters:

n(r) = n0

(
r

a

)df

, (5.1)

where n0 is a dimensionless proportionality constant (generally of order unity, the
actual value of n0 depends on the definition of r used) and df is the fractal
dimensionality. In a plot of log(n) versus log(r), we would see a fractal regime
for low values of r which ends at the size of the average cluster in the system
(we have neglected effects of monomers, which have zero close neighbours and hence
suppress n0). At high values of r we have the homogeneous regime, where the number
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of neighbouring particles simply scales with the volume of the surrounding sphere.
The prefactor then becomes the volume fraction:

n(r) = φ

(
r

a

)3

(5.2)

In our two-dimensional system, the number of neighbouring cylinders scales with the
area of the surrounding cylinder, which changes the power in this equation from 3
to 2. If the fractal regime extends all the way to the homogeneous regime, there is
an intersection point between the two regimes. The radius which corresponds to this
intersection point is called the correlation length ζ and is an indication of the average
size of the aggregates. In many systems, however, there will be a finite cross-over
regime between the fractal and homogeneous regime, which can, for example, be due
to the existence of clusters of various sizes and shapes. In this case, the correlation
length can be defined by linear extrapolation of the fractal and homogeneous scaling
regime to the intersection point.

In our results, from a distance of 5a − 10a, the regime is indeed found to be ho-
mogeneous (figure 11). The regime is clearly non-homogeneous for smaller distances,
but the slope varies with the distance. This indicates that aggregates are present,
but that the fractal dimensionality varies with the distance from the centre of the
aggregate. The averaged size of the aggregates can be obtained from the point where
the non-homogeneous regime turns into the homogeneous regime; a constant fractal
dimensionality is not required. Therefore, the correlation length was assessed by
determining the distance r/a where the fit value, obtained by linear regression of the
log(n(r))–log(r/a)-plot at distances r/a larger than 10, deviated more than 5 % from
the actual value of log(n(r)). These data are also given in figure 11. The correlation
length is found to depend on the area fraction cylinders in the system as well as on
Reshear,p . The lowest correlation length of 2.3a is found for an area fraction of 0.40
and Reshear,p = 0.023. For area fractions of 0.10 and 0.25, the correlation lengths were
4.0a and 3.9a, respectively (Reshear,p = 0.023). With increasing Reshear,p , the correlation
length tends to increase, to maximal 7.5a, 6.9a and 5.3a for area fractions of 0.10,
0.25 and 0.40, respectively. The largest clusters are again found at the lowest area
fraction.

Compared to the pair-distribution functions, these results provide additional infor-
mation about the size of the clusters. The results agree well with each other; the largest
effects of Reshear,p on the microstructure are found for the lowest area fractions.
Moreover, the trends in the effects of Reshear,p on the microstructure agree well
with the effects on shear-induced diffusion. It seems likely that the microstructure
is the coupling factor for the effect of Reshear,p on shear-induced diffusion. The
development of particle clustering might, moreover, be related to the longer and closer
approach of two interacting particles at higher shear rates. This direct relationship
with microstructure does, however, not exist for the viscosity of the suspension,
where not only the microstructure seems to be important, but also the averaged
solid volume fraction, resulting in a more pronounced effect of Reshear,p at high
area fractions (Shakib-Manesh et al. 2002). Because of the direct coupling between
microstructure and shear-induced diffusion, it can be expected that other factors that
can affect the microstructure, such as attractive colloidal forces between the particles,
will also affect shear-induced diffusion.

In our results, Reshear,p starts to have a significant effect on the shear-induced
diffusivity at a value of about 0.1. In practical systems, for a suspension with particles
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suspension in shear flow with a cylinder area fraction of (a) 0.10, (b) 0.25 and (c) 0.40 at
Reshear,p = 0.023 − 0.346. The values are time-averaged over a strain γ̇ t from 30 to 60. The
correlation length ζ represents the distance where the cylinder distribution changes from
non-homogeneous into homogeneous.

with a radius a of 3 µm, for example, a shear rate of about 2800 s−1 would be required
in order to obtain this significant effect. For larger particles, this value quickly drops
down to even lower values. The shear rate in this example is well within the range of
commonly applied shear rates, which indicates the relevance of this study to practical
systems.

6. Conclusions
In this study, the LB method was applied in order to examine the effects of shear

rate on the flow behaviour and microstructure of non-Brownian suspensions in a
Couette system. In the shear regime studied, inertial effects on a single cylinder were
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negligibly small. In a system with two interacting cylinders, however, some effects of
the shear rate were present. First, the cylinders approached each other more closely
and during a longer time with increasing shear rate, which is in accordance with
expectations when inertia causes them to move to other streamlines. Secondly, at
Reshear,p higher than 0.06, the particle trajectory started to become asymmetric, finally
leading to a dispersal of the two particles. The viscosity was also dependent on
the shear rate in the shear regime studied: the suspension namely exhibited shear
thickening behaviour.

In order to know how we could reliably evaluate shear-induced self-diffusion in
our system, first, the displacements of the particles were monitored as a function of
strain. The simulations clearly showed that shear-induced self-diffusion is a long-time
diffusive behaviour, which typically only established itself after a strain of about 5–10.
Furthermore, it is shown that at least a few hundred suspended particles are needed
in the simulations to resolve shear-induced diffusion coefficients reliably. For systems
with fewer than 100 particles, the suspended particles interact with their periodic
images over the periodic boundaries in the system, leading to an underestimation of
the diffusion coefficients.

Following the developed method, the effect of Reshear,p up to 0.35 on shear-induced
self-diffusion was investigated for particle fractions of 0.10, 0.25 and 0.40. In contrast
to theory for the Stokes flow regime, which predicts a linear increase of the diffusivity
with shear rate, the mean square particle displacements were found to increase faster at
increasing Reshear,p , leading to an increase of the dimensionless shear-induced diffusion
coefficient Dyy/γ̇ a2. This increase was most pronounced at particle fractions of 0.10
and 0.25 and started already at Reshear,p equal to 0.05–0.07, which is comparable to
the shear regime where effects on two interacting particles and the viscosity arose.

Analysis of the microstructure of the suspensions revealed that an increase of
Reshear,p leads to an increase of particle clustering, especially at particle fractions of
0.10 and 0.25. The effects of Reshear,p on particle clustering relate well to the effects
on shear-induced diffusion, indicating that the microstructure of suspensions is a key
factor for shear-induced diffusivity. This will have consequences for suspensions with
attractive interparticle forces.
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Appendix. Lubrication force in a two-dimensional suspension
We apply lubrication theory to calculate the hydrodynamic force between two

cylinders in a two-dimensional suspension. For small gaps (i.e. rim to rim distances)
2h the force between two adjacent cylinders can be calculated, solving the flow field
in the gap upto first order in ε = h/a. In the calculation, two cylinders are considered,
approaching each other with a velocity 2U . A Cartesian coordinate system (ex, ez)
was used with the origin at the centre of the gap. The z-coordinate, taken along
the line of centres, was scaled on h and the x-coordinate was scaled on

√
ah; the
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z-component of the velocity was scaled on U , the x-component on
√

a/h U . The
pressure was scaled on aηU/h2. Under these conditions, the differential equation for
the dimensionless streamfunction ψ becomes:

∂4ψ

∂z4
+ 2ε

∂4ψ

∂x2∂z2
+ ε2 ∂4ψ

∂x4
= 0. (A 1)

The rim of both disks is described by z = ± b(x) with

b(x) = 1 + 12x2 + ε18x4 + ε2116x6 + · · · (A 2)

and the boundary conditions on these rims read:

vz = − ∂ψ

∂x
= ∓1, (A 3)

vx =
∂ψ

∂z
= 0, (A 4)

For convenience, ψ = 0 is chosen at z = 0, so ψ is odd in z. This equation can be
solved assuming

ψ = ψ0 + εψ1 + · · · (A 5)

where ψ0 fulfils the boundary conditions (A 3) and (A 4) and ∂ψ1/∂x = ∂ψ1/∂z = 0 on
the rim of the particle. The solution is given by:

ψ0 = 1
2
x

(
3

(
z

b

)
−

(
z

b

)3)
, (A 6)

ψ1 = 3
20

g(x)

(
z

b

)(
1 −

(
z

b

)2)2

, (A 7)

where g(x) = 4x(b′)2 − 2bb′ − xbb′′ and b′, b′′ are the first and second derivatives
of b = b(x), respectively. The pressure along the line z =0 can be calculated by
integrating: (

∂p

∂x

)
z=0

= −3b−3
(
x + ε

(
3
5
g(x) − 1

2
f (x)

))
, (A 8)

where f (x) = 2x(b′)2 − 2bb′ − xbb′′. The zz-component of the total stress tensor (the
superfix [D] indicates the dimensional form)

T [D]
zz = −p[D] + 2η

∂v[D]
z

∂z[D]
,

reads in dimensionless form

Tzz = −p + 2ε
∂vz

∂z
= −p − 2ε

∂2Ψ

∂x∂z
,

where also Tzz has been scaled on p0 = aηU/h2. The (dimensionless) force per unit
length, F , on the particle is calculated by integrating Tzz along the line z = 0 (swopping
the order of integration of the ∂p/∂x term):

F (ε) = 2

∫ ∞

0

(Tzz)z=0 dx = 2

∫ ∞

0

x

(
∂p

∂x

)
z=0

dx − 4ε

∫ ∞

0

(
∂2Ψ

∂x∂z

)
z=0

dx

=

∫ ∞

0

3x

b3(x)

(
2x + ε

(
6
5
g(x) − f (x)

))
dx − 4ε

∫ ∞

0

3

2b2
(b − xb′) dx. (A 9)
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This expression can be rewritten as:

F (ε) = F0 + ε(F1 − F2),

where

F0 =

∫ ∞

0

6x2(
1 + 1

2
x2

)3
dx =

3

4
π

√
2 = 3.3322,

F1 =

∫ ∞

0

3x(
1 + 1

2
x2

)3

((
25
10

x3 − 3
5
x − 6x5

(8 + 4x2)

))
dx = 207

80
π

√
2 = 11.496,

F2 =

∫ ∞

0

6

(
1 − 1

2
x2

)
(
1 + 1

2
x2

)2
dx = 0.0,

are numerical constants. In our simulations, we have erroneously used a value of
F1 = 12.829, which lead to about 1 % overestimation of the lubrication force. The
lubrication force per unit length in dimensional form, F [D] = p0

√
ahF , follows from

(A 9) as:

F [D] =

(
h

a

)−3/2

ηUF (h/a) =

(
h

a

)−3/2

ηU

(
F0 +

h

a
F1

)
, (A 10)

which expression is correct in first order of ε.
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